首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Explicit algebraic Reynolds stress model for shock-dominated flows
Abstract:Shock waves drastically alter the nature of Reynolds stresses in a turbulent flow, and conventional turbulence models cannot reproduce this effect. In the present study, we employ explicit algebraic Reynolds stress model (EARSM) to predict the Reynolds stress anisotropy generated by a shockwave. The model by Wallin and Johansson (2000) is used as the baseline model. It is found to over-predict the post-shock Reynolds stresses in canonical shock turbulence interaction. The budget of the transport equation of Reynolds stresses computed using linear interaction analysis shows that the unsteady shock distortion mechanism and the pressure–velocity correlations are important. We propose improvement to the baseline model using linear interaction analysis results and redistribute the turbulent kinetic energy between the principle Reynolds stresses. The new model matches DNS data for the amplification of Reynolds stresses across the shock and their post-shock evolution, for a range of Mach numbers. It is applied to oblique shock/boundary-layer interaction at Mach 5. Significant improvements are observed in predicting surface pressure and skin friction coefficient, with respect to experimental measurements.
Keywords:High-speed flows  Turbulence modeling  SBLI  Shock waves
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号