Abstract: | It is shown that, for hypersonic flows with moderate and strong degrees of interaction, perturbations brought about, for example, by a bottom opening or by any other sort of obstacle are propagated up to the leading edge of a solid body. Local regions with very large pressure gradients cannot arise in the flow. This is connected with the possibility of the development of breakaway zones with a length on the order of magnitude of the size of the solid body, described in the first approximation by the equations of the boundary layer. From a mathematical point of view the problem comes down to establishing the nonsingular nature of the solution near the leading edge, and to finding eigensolutions which make it possible to satisfy the boundary conditions at the trailing edge of the solid body. It is shown that, with a weak interaction between the hypersonic flow and the boundary layer, there may arise short flow regions with free interaction and locally nonviscous flows with large pressure gradients, within the limits of which the perturbations may move upstream.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 40–49, July–August, 1970.In conclusion, the author thanks V. V. Sychev for his evaluation of the problem. |