首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Theoretical Study of a Single-Walled ZnO Nanotube as a Sensor for H_2 O Molecules
Abstract:We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theoretically designed a new sensor for detecting water molecules using single-walled ZnO nanotubes using a combination of density functional theory and the non-equilibrium Green's function method. Details of the geometric structures and adsorption energies of the H 2 O molecules on the ZnO nanotube surface have been investigated. Our computational results demonstrate that the formation of hydrogen bonding between the H 2 O molecules and the ZnO nanotube, and adsorption energies of the H 2 O molecules on the ZnO nanotube are larger than the adsorption energies of other gas molecules present in the atmospheric environment. Moreover, the current-voltage curves of the ZnO nanotube with and without H 2 O molecules adsorbed on its surface are calculated, the results of which showed that the H 2 O molecules form stable adsorption configurations that could lead to the decrease in current. These results suggest that the single-walled ZnO nanotubes are able to detect and monitor the presence of H 2 O molecules by applying bias voltages.
Keywords:ZnO nanotube  H  O molecule sensor  density functional theory  electron transport
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号