首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic and transport properties of superconducting Mg10B2
Authors:Finnemore D K  Ostenson J E  Bud'ko S L  Lapertot G  Canfield P C
Affiliation:Ames Laboratory, U.S. Department of Energy and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA.
Abstract:Transport and thermodynamic properties of a sintered pellet of the newly discovered MgB2 superconductor have been measured to determine the characteristic critical magnetic fields and critical current densities. Both resistive transition and magnetization data give similar values of the upper critical field, Hc2, with magnetization data giving dHc2/dT = 0.44 T/K at the transition temperature of Tc = 40.2 K. Close to the transition temperature, magnetization curves are thermodynamically reversible, but at low temperatures the trapped flux can be on the order of 1 T. The value of dHc/dT at Tc is estimated to be about 12 mT/K, a value similar to classical superconductors like Sn. Hence, the Ginzburg-Landau parameter kappa approximately 26. Estimates of the critical supercurrent density, Jc, using hysteresis loops and the Bean model, give critical current densities on the order of 10(5) A/cm2. Hence the supercurrent coupling through the grain boundaries is comparable to intermetallics like Nb3Sn.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号