基于DPCA与LSSVM的飞机发动机异常状态识别 |
| |
引用本文: | 蒋丽英,薛成安,崔建国,于明月,蒲雪萍. 基于DPCA与LSSVM的飞机发动机异常状态识别[J]. 应用声学, 2015, 23(11) |
| |
作者姓名: | 蒋丽英 薛成安 崔建国 于明月 蒲雪萍 |
| |
作者单位: | 沈阳航空航天大学自动化学院,沈阳航空航天大学自动化学院,沈阳航空航天大学自动化学院,沈阳航空航天大学自动化学院,中国燃气涡轮研究院 |
| |
基金项目: | 辽宁省教育厅科学研究项目(L2013070);国防基础科研计划项目(IDA0520110023) |
| |
摘 要: | 针对飞机发动机异常状态识别精度差、效率低和易误诊漏诊等问题,提出了一种基于动态主元分析 (Dynamic Principal Component Analysis, DPCA)和最小二乘支持向量机(Least Square Support Vector Machine, LSSVM)的飞机发动机润滑系统异常状态识别方法。首先对发动机润滑系统参数进行DPCA处理以及在线检测是否有故障发生,如果有故障发生,再采用LSSVM方法进行异常状态识别。以某型飞机发动机润滑系统为例,对文中所提方法的准确性进行试验验证,由试验结果得出文中方法能有效提高飞机发动机异常状态识别准确率。
|
关 键 词: | 润滑系统 动态主元分析 最小二乘支持向量机 状态识别 |
收稿时间: | 2015-07-16 |
修稿时间: | 2015-09-14 |
Aircraft Engine Fault Diagnosis Based on DPCA and LSSVM |
| |
Abstract: | In view of the problems such as low accuracy, low efficiency and easy to misdiagnosis and missed diagnosis for aircraft engine fault diagnosis, an intelligent method of aircraft engine lubricating system fault diagnosis is presented. It is based on the Dynamic Principal Component Analysis (DPCA) method and the Least Square Support Vector Machine (LSSVM) method. At first, the DPCA method is employed to preprocess the lubricating system variables and detect whether there is a fault online. If there is a fault, the LSSVM method is used to state recognition. Then, the lubricating system of a certain type of aircraft engine is taken as an instance to verify the validity of the proposed method. Results show that the method can effectively improve the accuracy of fault diagnosis. |
| |
Keywords: | lubricating system dynamic principal component analysis least square support vector machine state recognition |
|
| 点击此处可从《应用声学》浏览原始摘要信息 |
|
点击此处可从《应用声学》下载全文 |
|