首页 | 本学科首页   官方微博 | 高级检索  
     

含有误差校正的小波神经网络交通流量预测
引用本文:王秋平,舒勤,黄宏光. 含有误差校正的小波神经网络交通流量预测[J]. 应用声学, 2016, 24(2): 168-170
作者姓名:王秋平  舒勤  黄宏光
作者单位:四川大学 电气信息学院,四川大学 电气信息学院,四川大学 电气信息学院
基金项目:四川省交通科技项目(2013c7-1)。
摘    要:交通流量的准确预测对于高速路管理者进行决策至关重要。建立了小波神经网络(WNN)交通流量预测模型,并通过预测训练误差和测试误差校正预测结果来提高预测精度。首先构建WNN模型对交通流量进行初步预测,然后利用经验模态分解(EMD)和WNN模型对训练误差和测试误差进行预测。分别用训练误差预测值、测试误差预测值和两种误差预测值的加权对流量初步预测结果进行修正得到最终预测值。采用四川省成灌高速路交通流量数据进行了仿真对比实验,仿真结果表明含有误差校正的小波神经网络模型能有效提高交通流量预测精度,并且利用两种误差加权修正模型的预测精度高于利用测试误差的修正模型和利用训练误差的修正模型。

关 键 词:高速路交通流量  流量预测  小波神经网络  误差预测  经验模态分解
收稿时间:2015-07-23
修稿时间:2015-08-18

Wavelet Neural Network with Predict Error Correction in Traffic Flow Prediction
SHU qin and HUANG Hong-guang. Wavelet Neural Network with Predict Error Correction in Traffic Flow Prediction[J]. Applied Acoustics(China), 2016, 24(2): 168-170
Authors:SHU qin and HUANG Hong-guang
Abstract:An accurate predict of traffic flow is critical for highway managers to make decisions. A wavelet neural network (WNN) model was established for forecasting traffic flow, at the same time, the prediction accuracy was improved by the train-error and test error correction. WNN model was established for a preliminary prediction of traffic flow, and then EMD-WNN model was proposed to forecast the train-error and test error. Finally, the correction of preliminary prediction values was carried out by predictive value of train-error, test-error and weighted value of the two kind of errors respectively. The contrastive experiments were carried out using the actual traffic flow data on California highway. The results show that the prediction accuracy was improved by the WNN model with error correction, and prediction accuracy is highest when the weighted-error- correction is used.
Keywords:highway traffic flow   flow prediction   wavelet neural network   error prediction   empirical mode decomposition
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号