首页 | 本学科首页   官方微博 | 高级检索  
     


Pyramidane 2. Further computational studies: potential energy surface, basicity and acidity, electron-withdrawing and electron-donating power, ionization energy and electron affinity, heat of formation and strain energy, and NMR chemical shifts
Authors:E. Lewars
Affiliation:

Trent University, Peterborough, Ontario, Canada K9J 7B8

Abstract:The novel cycloalkane pyramidane (tetracyclo[2.1.0.01,302,5]pentane, [3.3.3.3]fenestrane), C5H4, with a pyramidal carbon atom, was investigated further. Calculations at the B3LYP/6-31G* and G2(MP2) levels supported earlier conclusions from QCISD(T)/6-31G*//MP2(FC)/6-31G* energies that pyramidane lies in a deep well (ca. 100 kJ mol−1) on the potential energy surface. The pyramidal carbon is predicted to have a lone electron pair, and calculations (CBS-4) indicate that pyramidane is remarkably basic for a saturated hydrocarbon (proton affinity 976, cf. 922 and 915 kJ mol−1 for pyridine and aniline, respectively). The calculated (CBS-4) acidity is similar to that of tetrahedrane and toluene; the pyramidyl group (C5H3) attached to an atom bearing a lone electron pair appears to be much more strongly electron-withdrawing than the phenyl group. The infrared CO stretching frequency and C–CHO rotational barriers of pyramCHO, PhCHO and cyclopropylCHO indicate that the pyramidyl group is comparable to phenyl and cyclopropyl in its ability to donate electrons to an electron-deficient carbon. The adiabatic ionization energy of pyramidane is ca. 9.0 eV (MP2/6-31G*, energy differences and Koopmans’ theorem), similar to that of typical cycloalkanes. The heat of formation of pyramidane was calculated by the G2(MP2) method and isodesmic reactions to be to be 585 kJ mol−1 and the strain energy was estimated to be 622 kJ mol−1; pyramidane is 122 kJ mol−1 more strained than its isomer spiropentadiene. Application of the NMR NICS method, varying the position of the probe nucleus, gave no evidence for benzenoid-type aromaticity in the potentially cyclobutadiene cation-like base of pyramidane.
Keywords:Pyramidane   Tetracyclo[2.1.0.01,302,5]pentane   [3.3.3.3]Fenestrane   Ab initio calculations   Density functional calculations   Strained molecules
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号