首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compound Poisson Law for Hitting Times to Periodic Orbits in Two-Dimensional Hyperbolic Systems
Authors:Meagan Carney  Matthew Nicol  Hong-Kun Zhang
Institution:1.Department of Mathematics,University of Houston,Houston,USA;2.Department of Mathematics and Statistics,University of Massachusetts Amherst,Amherst,USA
Abstract:We show that a compound Poisson distribution holds for scaled exceedances of observables \(\phi \) uniquely maximized at a periodic point \(\zeta \) in a variety of two-dimensional hyperbolic dynamical systems with singularities \((M,T,\mu )\), including the billiard maps of Sinai dispersing billiards in both the finite and infinite horizon case. The observable we consider is of form \(\phi (z)=-\ln d(z,\zeta )\) where d is a metric defined in terms of the stable and unstable foliation. The compound Poisson process we obtain is a Pólya-Aeppli distibution of index \(\theta \). We calculate \(\theta \) in terms of the derivative of the map T. Furthermore if we define \(M_n=\max \{\phi ,\ldots ,\phi \circ T^n\}\) and \(u_n (\tau )\) by \(\lim _{n\rightarrow \infty } n\mu (\phi >u_n (\tau ) )=\tau \) the maximal process satisfies an extreme value law of form \(\mu (M_n \le u_n)=e^{-\theta \tau }\). These results generalize to a broader class of functions maximized at \(\zeta \), though the formulas regarding the parameters in the distribution need to be modified.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号