Abstract: | Bi9Rh2Br3, Bi9Rh2I3, and Bi9Ir2I3 – A New Structure Family of Quasi One‐dimensional Metals Bi9Rh2Br3, Bi9Rh2I3, and Bi9Ir2I3 were synthesized from the elements using niobium bromides or iodides as auxiliaries to modify the partial pressures in the course of the reaction. X‐ray diffraction on single crystals showed that the compounds are not isomorphous. However they have a common structural principle: strands of condensed [MBi8] polyhedra, which are separated by halide anions. The spatial arrangement of the [MBi1/1Bi7/2] strands differs with the combination of elements: In Bi9Rh2I3 (monoclinic, P21/m (no. 11), a = 775.6(1), b = 1374.9(2), c = 901.1(2) pm, β = 109.29(2)°) all strands are oriented parallel to each other. Bi9Rh2Br3 (monoclinic, P21/m (no. 11), a = 927.98(8), b = 1372.1(1), c = 1992.7(2) pm, β = 100.77(1)°) and Bi9Ir2I3 (orthorhombic, Pnma (no. 62), a = 2677.5(5), b = 1394.2(2), c = 967.6(1) pm) are ordered polytypes with two orientations changing in alternating layers of characteristic widths. The experimental proof of metallic conductivity in Bi9Ir2I3 supports the assumption of delocalised electrons inside the [MBi1/1Bi7/2] strands. The magnetic susceptibility of Bi9Rh2Br3 increases slowly with decreasing temperature and shows a local maximum at about 14 K. |