首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Riesz basis property of root vectors of non‐self‐adjoint operators generated by aircraft wing model in subsonic airflow
Authors:Marianna A Shubov
Abstract:This paper is the third in a series of several works devoted to the asymptotic and spectral analysis of a model of an aircraft wing in a subsonic air flow. This model has been developed in the Flight Systems Research Center of UCLA and is presented in the works by Balakrishnan. The model is governed by a system of two coupled integro‐differential equations and a two‐parameter family of boundary conditions modeling the action of the self‐straining actuators. The differential parts of the above equations form a coupled linear hyperbolic system; the integral parts are of the convolution type. The system of equations of motion is equivalent to a single operator evolution–convolution equation in the energy space. The Laplace transform of the solution of this equation can be represented in terms of the so‐called generalized resolvent operator, which is an operator‐valued function of the spectral parameter. This generalized resolvent operator is a finite‐meromorphic function on the complex plane having the branch cut along the negative real semi‐axis. Its poles are precisely the aeroelastic modes and the residues at these poles are the projectors on the generalized eigenspaces. In the first two papers (see 33, 34]) and in the present one, our main object of interest is the dynamics generator of the differential parts of the system. This generator is a non‐self‐adjoint operator in the energy space with a purely discrete spectrum. In the first paper, we have shown that the spectrum consists of two branches, and have derived their precise spectral asymptotics with respect to the eigenvalue number. In the second paper, we have derived the asymptotical approximations for the mode shapes. Based on the asymptotical results of the first two papers, in the present paper, we (a) prove that the set of the generalized eigenvectors of the aforementioned differential operator is complete in the energy space; (b) construct the set of vectors which is biorthogonal to the set of the generalized eigenvectors in the case when there might be not only eigenvectors but associate vectors as well; and (c) prove that the set of the generalized eigenvectors forms a Riesz basis in the energy space. To prove the main result of the paper, we made use of the Nagy–Foias functional model for non‐self‐adjoint operators. The results of all three papers will be important for the reconstruction of the solution of the original initial‐boundary‐value problem from its Laplace transform in the forthcoming papers. Copyright © 2000 John Wiley & Sons, Ltd.
Keywords:flutter  aeroelastic modes  non‐self‐adjoint differential operator  non‐self‐adjoint polynomial pencil  discrete spectrum  completeness  biorthogonal family of functions  Riesz basis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号