首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Combined Effect of Connectivity and Dependency Links on Percolation of Networks
Authors:Amir Bashan  Shlomo Havlin
Institution:(1) Minerva Center and Dept. of Physics, Bar-Ilan University, Ramat-Gan, Israel;(2) Dept. of Physics, Clarkson University, Potsdam, NY, USA
Abstract:Percolation theory is extensively studied in statistical physics and mathematics with applications in diverse fields. However, the research is focused on systems with only one type of links, connectivity links. We review a recently developed mathematical framework for analyzing percolation properties of realistic scenarios of networks having links of two types, connectivity and dependency links. This formalism was applied to study Erdős-Rényi (ER) networks that include also dependency links. For an ER network with average degree `(k)]\bar{k} that is composed of dependency clusters of size s, the fraction of nodes that belong to the giant component, P , is given by P=ps-11-exp(-`(k)]pP) ]sP_{\infty}=p^{s-1}1-\exp{(-\bar{k}pP_{\infty})} ]^{s} where 1−p is the initial fraction of randomly removed nodes. Here, we apply the formalism to the study of random-regular (RR) networks and find a formula for the size of the giant component in the percolation process: P =p s−1(1−r k ) s where r is the solution of r=p s (r k−1−1)(1−r k )+1, and k is the degree of the nodes. These general results coincide, for s=1, with the known equations for percolation in ER and RR networks respectively without dependency links. In contrast to s=1, where the percolation transition is second order, for s>1 it is of first order. Comparing the percolation behavior of ER and RR networks we find a remarkable difference regarding their resilience. We show, analytically and numerically, that in ER networks with low connectivity degree or large dependency clusters, removal of even a finite number (zero fraction) of the infinite network nodes will trigger a cascade of failures that fragments the whole network. Specifically, for any given s there exists a critical degree value, `(k)]min\bar{k}_{\min}, such that an ER network with `(k)] £ `(k)]min\bar{k}\leq \bar{k}_{\min} is unstable and collapse when removing even a single node. This result is in contrast to RR networks where such cascades and full fragmentation can be triggered only by removal of a finite fraction of nodes in the network.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号