首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An experimental and numerical study on the adequacy of CH as a flame marker in premixed methane flames
Authors:Christina M Vagelopoulos  Jonathan H Frank
Institution:aCombustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969, USA
Abstract:The CH radical is frequently used as a flame marker because it is relatively short-lived and is present over a narrow region in flames. Discontinuities in the CH field are thus often interpreted as localized extinction of the flame. Recently, however, the adequacy of CH laser-induced fluorescence (LIF) as a flame marker was questioned by an experimental study of flame–vortex interactions in highly N2-diluted premixed methane flames. We demonstrate both experimentally and numerically that anomalies in the transient response of CH in this earlier study were due to reactant composition variations in the vortex. In addition, we evaluate the adequacy of CH LIF as a flame marker over a much broader range of conditions. Previous numerical studies showed that heat release rate correlates reasonably well with peak HCO] and the concentration product OH]CH2O], but poorly with CH], in highly N2-diluted premixed methane flames. Here, the correlation between heat release rate and CH is investigated both experimentally, by performing simultaneous measurements of CH, OH, and CH2O LIF, and numerically. We consider undiluted and N2-diluted premixed methane flames over a range of strain rates and stoichiometries. Results are reported for flames subjected to unsteady stretch and reactant composition variations. For all N2-dilution levels considered, the peak CH LIF signal correlates poorly with heat release rate when the stoichiometry of the reactant mixture changes from rich to lean. However, when flames are subjected to stretch, the correlation between CH and heat release rate improves as the N2-dilution level decreases. The correlation is reasonably good for undiluted flames with equivalence ratios of 0.8 < Φ < 1.2. This result is particularly encouraging, given the relevance of undiluted flames to practical applications, and it motivates further investigation of the parameter space for which difficulties may exist in using CH as a flame marker.
Keywords:Laminar-experiments  Heat-release rate  Flame–  vortex interaction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号