首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural, magnetic, and spectroscopic studies of YAgSn, TmAgSn, and LuAgSn
Authors:C Peter Sebastian  Constanze Fehse  J Paul Attfield  Sudhindra Rayaprol  Rainer Pöttgen
Institution:a Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany
b Institut für Physikalische Chemie and NRW Graduate School of Chemistry, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany
c European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
d Centre for Science at Extreme Conditions, University of Edinburgh, Erskine Williamson Building, King`s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
e Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (Haus D), 81377 München, Germany
Abstract:The rare earth-silver-stannides YAgSn, TmAgSn, and LuAgSn were synthesized from the elements by arc-melting and subsequent annealing. The three stannides were investigated by X-ray powder and single-crystal diffraction: NdPtSb type, P63mc, Z=2, a=468.3(1), View the MathML sourcepm, wR2=0.0343, 353 F2 values, 12 variables for YAgSn, and ZrNiAl type, P6¯2 m, a=726.4(2), View the MathML source, wR2=0.0399, 659 F2 values, 15 variables for TmAgSn, and a=723.8(2), View the MathML source, wR2=0.0674, 364 F2 values, 15 variables for LuAgSn. Besides conventional laboratory X-ray data with monochromatized Mo radiation, the structures were also refined on the basis of synchrotron data with View the MathML source, in order to clarify the silver-tin ordering more precisely. YAgSn has puckered, two-dimensional AgSn] networks with Ag-Sn distances of 278 pm, while the AgSn] networks of TmAgSn and LuAgSn are three-dimensional with Ag-Sn distances of 279 and 284 pm for LuAgSn. Susceptibility measurements indicate Pauli paramagnetism for YAgSn and LuAgSn. TmAgSn is a Curie-Weiss paramagnet with an experimental magnetic moment of 7.2 μB/Tm. No magnetic ordering is evident down to 2 K. The local environments of the tin sites in these compounds were characterized by 119Sn Mössbauer spectroscopy and solid-state NMR (in YAgSn and LuAgSn), confirming the tin site multiplicities proposed from the structure solutions and the absence of Sn/Ag site disordering. Mössbauer quadrupolar splittings were found in good agreement with calculated electric field gradients predicted quantum chemically by the WIEN2k code. Furthermore, an excellent correlation was found between experimental 119Sn nuclear magnetic shielding anisotropies (determined via MAS-NMR) and calculated electric field gradients. Electronic structure calculations predict metallic properties with strong Ag-Sn bonds and also significant Ag-Ag bonding in LuAgSn.
Keywords:Stannides  Solid-state NMR    ssbauer spectroscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号