首页 | 本学科首页   官方微博 | 高级检索  
     


Minimax Hierarchical Empirical Bayes Estimation in Multivariate Regression
Authors:Samuel D. Oman
Affiliation:Hebrew University, Jerusalem, Israelf1
Abstract:
The multivariate normal regression model, in which a vector y of responses is to be predicted by a vector x of explanatory variables, is considered. A hierarchical framework is used to express prior information on both x and y. An empirical Bayes estimator is developed which shrinks the maximum likelihood estimator of the matrix of regression coefficients across rows and columns to nontrivial subspaces which reflect both types of prior information. The estimator is shown to be minimax and is applied to a set of chemometrics data for which it reduces the cross-validated predicted mean squared error of the maximum likelihood estimator by 38%.
Keywords:James–  Stein estimate   mean squared error   prior information   subspace shrinkage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号