首页 | 本学科首页   官方微博 | 高级检索  
     


Syntheses and properties of enantiomerically pure higher (n > or = 7) [n-2]triangulanedimethanols and sigma-[n]helicenes
Authors:de Meijere Armin  Khlebnikov Alexander F  Kozhushkov Sergei I  Yufit Dmitrii S  Chetina Olga V  Howard Judith A K  Kurahashi Takuya  Miyazawa Kazutoshi  Frank Daniel  Schreiner Peter R  Rinderspacher B Christopher  Fujisawa Mari  Yamamoto Chiyo  Okamoto Yoshio
Affiliation:Institut für Organische und Biomolekulare Chemie der Georg-August-Universit?t G?ttingen, Tammannstrasse 2, 37077 G?ttingen, Germany. ameijer1@uni-goettingen.de
Abstract:(P)-(+)-Hexaspiro[2.0.0.0. 0.0.2.1.1.1.1.1]pentadecane [(P)-17] as well as (M)-(-)- and (P)-(+)-octaspiro[2.0.0.0.0.0.0.0.2.1.1.1.1.1.1.1]nonadecanes [(M)- and (P)-25]-enantiomerically pure unbranched [7]- and [9]triangulanes-have been prepared starting from racemic THP-protected (methylenecyclopropyl)methanol 6. The relative configurations of all important intermediates as well as the absolute configurations of the key intermediates were established by X-ray crystal structure analyses. This new convergent approach to enantiomerically pure linear [n]triangulanes for n=7, 9 was also tested in two variants towards [15]triangulane. Some of the most prominent and unexpected features of the newly prepared compounds are the remarkable modes of self-assembly of the diols (P)-14, (E)-(3S,3'S,4S,4'S,5R,5'R)-21, (P)-(+)-22, and (E)-31 in the solid state through frameworks of intermolecular hydrogen bonds leading to, depending on the respective structure, nanotube- [(P)-14, (P)-(+)-22, and (E)-31], honeycomb-like structures [(E)-(3S,3'S,4S,4'S,5R,5'R)-21] or a supramolecular double helix [(P)-(+)- and (M)-(-)-22]. Liquid crystalline properties of the esters and ethers of the diols (P)-14, (P)-, and (M)-22 have also been tested. Although all of these [n]triangulanes have no chromophore which would lead to significant absorptions above 200 nm, they exhibit surprisingly high specific rotations even at 589 nm with [alpha](20)(D)=+672.9 (c=0.814 in CHCl(3)) for (P)-(+)-17, +909.9 (c=0.96 in CHCl(3)) for (P)-(+)-25, -890.5 (c=1.01 in CHCl(3)) for (M)-(-)-25, and -1302.5 (c=0.36 in CHCl(3)) for (M)-(-)-39, and the specific rotations increase drastically on going to shorter wavelengths. This outstanding rotatory power is in line with their rather rigid helical arrangement of sigma bonds, and accordingly these helically shaped unbranched [n]triangulanes may be termed "sigma-[n]helicenes", as they represent the sigma-bond analogues of the aromatic pi-[n]helicenes. Density functional theory (DFT) computations at the B3 LYP/6-31+G(d,p) level of theory for the geometry optimization and time-dependent DFT for determining optical rotations with a triplet-zeta basis set (B3 LYP/TZVP) reproduce the optical rotatory dispersions (ORD) very well for the lower members (n=4, 5) of the sigma-[n]helicenes. For the higher ones (n=7, 9, 15) the computed specific rotations turn out increasingly larger than the experimental values. The remarkable increase of the specific rotation with an increasing number of three-membered rings is proportional neither to the molecular weight nor to the number of cyclopropane rings in these sigma-[n]helicenes.
Keywords:chirality  helical structures  optical rotations  self‐assembly  small ring systems
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号