首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computer-aided photoelastic analysis of orthogonal 3D textile composites: Part 2. Combining least squares and finite-element methods for stress analysis
Authors:K -H Tsai  C -S Chiu
Institution:(1) Department of Textile Engineering, Feng-Chia University, Taichung, Taiwan, R.O.C.
Abstract:An approach combining least squares methods and finite element methods (FEM) is presented for subsequent photoelastic stress analysis of orthogonal 3D textile composites withR and α obtained in Part 1. Through this approach, these photoelastic stresses are obtained over a region of interest as if the composites were homogeneous materials. The least squares method is used for requiring the solution strain fields to best correlate with the distribution of the two photoelastic strain data of ɛ x − ɛ y and γ xy calculated directly from the measuredR and α. The FEM uses the homogenized composite properties to construct the nodal force equilibrium equations as constraints in the least squares formulation. As a result of combining this least squares method and FEM with lagrange multipliers, a linear system of equations is formulated with the unknown nodal displacements. Once these nodal displacements are solved, the strains and stresses can be calculated through FEM formulations. This approach is tested with the two experimental results completed in Part 1 for the aluminum and composite plates. The stresses obtained for the aluminum plate show close agreement with those obtained with the plain FEM computation. In the case of the orthogonal 3D composite plate, the local variations as observed inR and α are already necessarily eliminated from these solved photoelastic stresses. Furthermore, these stresses also match well with those computed with the plain FEM from the homogenized composite properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号