首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low volume microwave digestion for the determination of selenium in marine biological tissues by graphite furnace atomic absorption spectroscopy
Authors:Michelle Deaker  William Maher
Institution:

Faculty of Applied Science, University of Canberra, PO Box 1, Belconnen ACT 2616, Australia

Abstract:A microwave digestion method for the determination of marine biological tissues has been developed to allow determination of selenium in small sample sizes (< 0.1 g). The benefits of this technique include maintaining concentrates in extracts without the subsequent over dilution encountered when using larger vessels, increased sample throughput and reduced loss of volatile material. Freeze dried biological material (< 0.1 g) and nitric acid (1 ml) were placed into 7 ml screw top Teflon vessels which are completely sealed on capping. Two 7 ml vials were placed into larger 120 ml vessels fitted with a Teflon spacer and 10 ml of distilled water. The effects of microwave power and time, and sample mass on selenium recovery from three marine standard reference materials (NIST SRM 1566a Oyster Tissue, NRCC DORM-1 Dogfish Muscle and NRCC TORT-1 Lobster Hepatopancreas) were examined. The optimum conditions: 600 W, 2 min; 0 W, 2 min; 450 W, 45 min, allowed quantitative recoveries of selenium from these and three other standard reference materials (NRCC DOLT-1 Dogfish liver, NIST RM-50 Albacore tuna and IAEA MA-A-2 fish flesh). Studies on sample mass showed that the analysis of sample masses from 0.025 to 0.1 g gave selenium concentrations within the certified range. Six species of selenium: selenite, selenate, selenomethionine, selenocysteine, selenocystamine, and trimethyl selenonium were added to oyster, dogfish, and lobster tissues. Recoveries were near quantitative for all species (94–105%) except trimethyl selenonium (90–101%).
Keywords:Selenium  Microwave digestion  Marine tissues  Graphite furnace atomic absorption spectroscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号