首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tip gap height effects on flow structure and heat/mass transfer over plane tip of a high-turning turbine rotor blade
Authors:Sang Woo Lee  Hyun Suk Moon  Seong Eun Lee
Institution:School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701, Republic of Korea
Abstract:The effects of tip gap height-to-chord ratio, h/c, on the flow structure and heat/mass transfer over the plane tip surface of a large-scale high-turning turbine rotor blade have been investigated for h/c = 1.0%, 2.0%, 3.0% and 4.0%. For near-wall tip gap flow visualizations, a high-resolution oil film method is employed, and the naphthalene sublimation technique is used for local heat/mass transfer rate measurements. From the tip surface visualizations, a pair of vortices named “tip gap vortices” is identified in the leading edge region within the tip gap. The overall tip gap flow is characterized not only by the tip gap vortices but also by the flow separation/re-attachment process along the pressure-side tip edge. Within the separation bubble, there exist complicated near-wall flows moving toward a mid-chord flow converging area. With increasing h/c, the tip gap vortices, the flow separation/re-attachment, and the converging flows within the separation bubble tend to be intensified. In general, higher thermal load is found along the loci of the tip gap vortices and along the re-attachment line, while lower thermal load is observed behind the tip gap vortex system and near the mid-chord flow converging area. Heat/mass transfer characteristics with the variation of h/c are discussed in detail in conjunction with the tip gap flow features. Based on the flow visualizations and heat/mass transfer data, new realistic tip gap flow models have been proposed for h/c = 1.0 and 4.0%.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号