首页 | 本学科首页   官方微博 | 高级检索  
     


Molded polyethylene glycol microstructures for capturing cells within microfluidic channels
Authors:Khademhosseini Ali  Yeh Judy  Jon Sangyong  Eng George  Suh Kahp Y  Burdick Jason A  Langer Robert
Affiliation:Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Abstract:
The ability to control the deposition and location of adherent and non-adherent cells within microfluidic devices is beneficial for the development of micro-scale bioanalytical tools and high-throughput screening systems. Here, we introduce a simple technique to fabricate poly(ethylene glycol)(PEG) microstructures within microfluidic channels that can be used to dock cells within pre-defined locations. Microstructures of various shapes were used to capture and shear-protect cells despite medium flow in the channel. Using this approach, PEG microwells were fabricated either with exposed or non-exposed substrates. Proteins and cells adhered within microwells with exposed substrates, while non-exposed substrates prevented protein and cell adhesion (although the cells were captured inside the features). Furthermore, immobilized cells remained viable and were stained for cell surface receptors by sequential flow of antibodies and secondary fluorescent probes. With its unique strengths in utility and control, this approach is potentially beneficial for the development of cell-based analytical devices and microreactors that enable the capture and real-time analysis of cells within microchannels, irrespective of cell anchorage properties.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号