首页 | 本学科首页   官方微博 | 高级检索  
     


A fast dual proximal gradient algorithm for convex minimization and applications
Authors:Amir Beck  Marc Teboulle
Affiliation:1. Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, Haifa, Israel;2. School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Israel
Abstract:
We consider the convex composite problem of minimizing the sum of a strongly convex function and a general extended valued convex function. We present a dual-based proximal gradient scheme for solving this problem. We show that although the rate of convergence of the dual objective function sequence converges to the optimal value with the rate O(1/k2)O(1/k2), the rate of convergence of the primal sequence is of the order O(1/k)O(1/k).
Keywords:Dual-based methods   Fast gradient methods   Convex optimization   Rate of convergence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号