首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习的偏振遥感云检测优化算法
引用本文:汪杰君,刘少晖,李树,叶松,王新强,王方原. 基于机器学习的偏振遥感云检测优化算法[J]. 光子学报, 2021, 50(2): 166-174
作者姓名:汪杰君  刘少晖  李树  叶松  王新强  王方原
作者单位:桂林电子科技大学 电子工程与自动化学院,广西 桂林541004;广西光电信息处理重点实验室,广西 桂林541004;桂林电子科技大学 电子工程与自动化学院,广西 桂林541004;广西光电信息处理重点实验室,广西 桂林541004;桂林电子科技大学 电子工程与自动化学院,广西 桂林541004;广西光电信息处理重点实验室,广西 桂林541004;桂林电子科技大学 电子工程与自动化学院,广西 桂林541004;广西光电信息处理重点实验室,广西 桂林541004;桂林电子科技大学 电子工程与自动化学院,广西 桂林541004;广西光电信息处理重点实验室,广西 桂林541004;桂林电子科技大学 电子工程与自动化学院,广西 桂林541004;广西光电信息处理重点实验室,广西 桂林541004
基金项目:国家自然科学基金(No.41961050);广西自然科学基金(No.2019GXNSFBA245048);广西科技基地和人才专项基金(No.桂科AD19245117);广西自动检测技术与仪器重点实验室主任基金(No.YQ20105)。
摘    要:偏振遥感经验阈值云检测算法受主观因素影响较强,极易在亮地表上空出现云检测不准确的问题.针对该问题,本文提出了一种主动和被动遥感卫星相结合的机器学习云检测算法.该算法基于POLDER3载荷多通道多角度偏振特性以及CALIOP载荷高精度云垂直特性展开研究,利用POLDER3载荷和CALIOP载荷观测重合区域数据,搭建了粒子...

关 键 词:云检测  亮地表  偏振遥感  PSO算法  BP神经网络

Optimization Algorithm for Polarization Remote Sensing Cloud Detection Based on Machine Learning
WANG Jiejun,LIU Shaohui,LI Shu,YE Song,WANG Xinqiang,WANG Fangyuan. Optimization Algorithm for Polarization Remote Sensing Cloud Detection Based on Machine Learning[J]. Acta Photonica Sinica, 2021, 50(2): 166-174
Authors:WANG Jiejun  LIU Shaohui  LI Shu  YE Song  WANG Xinqiang  WANG Fangyuan
Affiliation:(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;Guangxi Key Laboratory of Optoelectronic Information Processing,Guilin,Guangxi 541004,China)
Abstract:The polarization remote sensing experience threshold cloud detection algorithm is strongly affected by subjective factors,and it is very easy to have the problem of inaccurate cloud detection over bright ground.In response to this problem,this paper proposes a machine learning cloud detection algorithm that combines active and passive remote sensing satellites.The algorithm is based on the multichannel multi-angle polarization characteristics of the POLDER3 payload and the high-precision cloud vertical characteristics of the CALIOP payload.It uses POLDER3 payload and CALIOP.The load observation overlaps the regional data,and the BP neural network optimized by the Particle Swarm Optimization algorithm is built to train the cloud detection model.Based on the cloud detection training model,a cloud detection experiment was carried out using POLDER3 level-1 data.The experiment showed that the cloud detection result of this algorithm is 92.46%consistent with the MODIS cloud detection product,which is higher than the consistency between the official POLDER3 cloud detection product and the MODIS cloud detection product 83.13%.By comparing the experimental results of the algorithm in this paper with the optical characteristics of different pixels from the official POLDER3 cloud detection product,it is found that compared with the official POLDER3 algorithm,this algorithm is more sensitive to thin clouds over the bright surface and can perform cloud detection more effectively.
Keywords:Cloud detection  Bright ground  Polarization remote sensing  PSO algorithm  BP neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号