首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Implementation of a Simple Nanostructured Bio‐electrode with Immobilized Rhus Vernicifera Laccase for Oxygen Sensing Applications
Abstract:In this work a simple nanostructured direct‐electron transfer bio‐electrode based on tree laccase from Rhus vernicifera is described. The electrode was implemented on a 2 mm diameter graphite mine casted with a reduced graphene surface presenting the specific capacitance of 195.8 F g−1. About 10 μl of mixture between 25 mg mL−1 laccase suspension and 5 mg mL−1 single‐walled carbon nanotubes in 2 % SDS is dropped over the surface followed by 5 μl of the biological friendly tetrakis(2,3‐dihydroxypropyl)‐silane monomer sol to provide physical entrapment in a silica matrix after gelation. The rigidity of enzyme encapsulation allowed to obtain a constant enzyme turnover of about 16 min−1 in the extended pH range of 6.0‐7.5, being the activity almost proportional to the temperature used in the interval between 25 and 40 °C. The graphite‐graphene/SWCNT‐laccase/sol‐gel electrode enabled a proportional response to molecular oxygen up to the concentration of 0.45 mmol L−1 and is capable to generate the maximum power of 4.5 μW cm−2 at 0.250 V vs the AgCl/Ag reference electrode in quiescent oxygen saturated solution.
Keywords:Biosensors  direct electron transfer  laccase from Rhus vernicifera  nanostructured electrode  sol-gel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号