首页 | 本学科首页   官方微博 | 高级检索  
     


Quantum Field Theory and Dense Measurement
Authors:Daniel Bar
Affiliation:(1) Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
Abstract:We show, using quantum field theory (QFT), that performing a large number of identical repetitions of the same measurement does not only preserve the initial state of the wave function (the Zeno effect), but also produces additional physicaleffects. We first discuss the Zeno effect in the framework of QFT, that is, as a quantum field phenomenon. We then derive it from QFT for the general case in which the initial and final states are different. We use perturbation theory and Feynman diagrams and refer to the measurement act as an external constraint upon the system that corresponds to the perturbative diagram that denotes this constraint. The basic physical entities dealt with in this work are not the conventional once-perfomed physical processes, but their n times repetition where n tends to infinity. We show that the presence of these repetitions entails the presence of additional excited state energies, and the absence of them entails the absence of these excited energies.
Keywords:quantum field theory  Zeno effect  Feynman diagrams
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号