首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heating of deuterium clusters by a superatomic ultra-short laser pulse
Authors:V P Kraĭnov  M B Smirnov
Institution:1.Moscow Physicotechnical Institute,Moscow oblast,Russia;2.Institute of Molecular Physics,Russian Research Centre Kurchatov Institute,Moscow,Russia
Abstract:The mechanisms of heating of the electronic component of large deuterium clusters by a super-atomic ultra-short laser pulse field are considered. During pulse rise, the so-called “vacuum heating” plays the determining role. Electrons escaping from a cluster into the vacuum with a low energy return back in a time equal to the period of the laser under laser field action. The returning electrons have a higher energy (on the order of the vibrational energy in the laser radiation field), which causes cluster heating. As the laser field increases, the electronic temperature largely grows at the expense of decreasing the Coulomb potential energy of electron repulsion because of a decrease in the number of electrons. The dynamics of above-barrier cluster ionization at the leading edge of a superatomic laser pulse is calculated. The results are discussed in the light of recent experiments aimed at creating desktop sources of monoenergetic neutrons formed as a result of the fusion of deuterium nuclei in a cluster plasma.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号