首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cylindrical void in a rigid-ideally plastic single crystal III: Hexagonal close-packed crystal
Authors:Yong X Gan  Jeffrey W Kysar
Institution:Department of Mechanical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 500 West 120th Street, New York, NY 10027, USA
Abstract:The analytical solution is derived for the plane strain stress field around a cylindrical void in a hexagonal close-packed single crystal with three in-plane slip systems oriented at the angle π/3 with respect to one another. The critical resolved shear stress on each slip system is assumed to be equal. The crystal is loaded by both internal pressure and a far-field equibiaxial compressive stress. The deformation field takes the form of angular sectors, called slip sectors, within which only one slip system is active; the boundaries between different sectors are radial lines. The stress fields are derived by enforcing equilibrium and a rigid, ideally plastic constitutive relationship, in the spirit of anisotropic slip line theory. The results show that each slip sector is divided into smaller regions denoted as stress sectors and the stress state valid within each stress sector is derived. It is shown that stresses are unique and are continuous within stress sectors and across stress sector boundaries, but the gradient of stresses is not continuous across the boundaries between stress sectors. The solution shows self-similarity in that the stresses over the entire domain can be determined from the stresses within a small region adjacent to the void by invoking certain scaling and symmetry properties. In addition, the stress state exhibits periodicity along logarithmic spirals which emanate from the void. The results predict that the mean value of in-plane pressure required to activate plastic deformation around a void in a single crystal can be higher than that necessary for a void in an isotropic material and is sensitive to the orientation of the slip systems relative to the void.
Keywords:Single crystal  Self-similarity  Anisotropic slip line theory  Logarithmic spiral  Void growth
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号