首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A combined electron paramagnetic resonance and fourier transform infrared study of the co(c(6)h(6))(1,2) complexes isolated in neat benzene or in cryogenic matrixes
Authors:Béchamp Kevin  Levesque Michelle  Joly Helen  Manceron Laurent
Institution:Department of Chemistry and Biochemistry, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6.
Abstract:The products obtained in the reaction of cobalt atoms in neat benzene or in a benzene/argon mixture at low temperature have been reinvestigated. At least three cobalt-containing species were detected by IR, namely, Co(C(6)H(6)), Co(C(6)H(6))(2), and Co(x)(C(6)H(6)), x>1. The IR bands were assigned to these complexes by monitoring their behavior as a function of (a) Co and C(6)H(6) concentration, (b) isotopic substitution, and (c) photoirradiation. We were able to analyze the sample in neat benzene by both electron paramagnetic resonance (EPR) and IR spectroscopy and to determine the magnetic parameters (g tensor and Co hyperfine interaction) for the Co(C(6)H(6))(2) sandwich compound. The large number of fundamental bands observed in the IR spectrum of Co(C(6)H(6))(2), the absorption pattern observed in the Co-ring stretching region of the IR spectrum of the mixed complex, Co(C(6)H(6))(C(6)D(6)) and the orthorhombic g-values extracted from the EPR spectrum are most consistent with nonequivalent benzene ligands in Co(C(6)H(6))(2), i.e., C(s) symmetry. A bonding scheme consistent with both the EPR and IR data for Co(C(6)H(6))(2) is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号