首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Cu纳米针上电场促进C-C耦合增强CO2电还原生成C2产物
引用本文:李黄经纬,周惠敏,周亚姣,胡俊华,Masahiro Miyauchi,傅俊伟,刘敏.Cu纳米针上电场促进C-C耦合增强CO2电还原生成C2产物[J].催化学报,2022(2):519-525.
作者姓名:李黄经纬  周惠敏  周亚姣  胡俊华  Masahiro Miyauchi  傅俊伟  刘敏
作者单位:中南大学物理与电子学院, 湖南省化学能源重点实验室, 粉末冶金国家重点实验室, 湖南长沙410083, 中国;郑州大学材料科学与工程学院, 河南郑州450002, 中国;东京工业大学材料与化工技术学院, 材料与科学工程系, 东京, 日本
基金项目:国家自然科学基金(1872174,22002189,U1932148);国家科技部重点研发国际间合作项目(2017YFE0127800,2018YFE0203402);湖南省重点领域研发计划(2020WK2002);湖南省自然科学基金(2020JJ2041,2020JJ5691);湖南省科技计划项目(2017XK20262,2017TP1001);深圳科技创新项目(JCYJ20180307151313532);中南大学中央高校基本科研业务费专项资金.
摘    要:电催化CO2减排技术利用电能将过量的CO2转化为有附加值的化学品,是解决能源危机、实现碳中和的有效途径之一.电催化CO2还原反应(CO2RR)中的多碳产物(C2),如乙烯和乙醇,因其比C1产物具有更高的能量密度和更广泛的应用而受到较大关注.目前为止,Cu基催化剂被认为是获得C2产物的独特材料.研究者在提高Cu基催化剂C2产物的活性和选择性方面做了大量的工作,如催化剂形貌工程、活性位点设计和中间吸附性能调控等.许多理论和实验研究已经证明,Cu基催化剂上的C-C偶联过程是C2产物生成的速率决定步骤.优化C-C偶联过程的能垒是提高C2产物活性和选择性的重要而直接的策略.CO2RR在Cu上是由CO2还原吸附CO(*CO)并二聚生成C2产物引起的.C-C偶联过程与*CO的吸附性能密切相关.众所周知,CO是一种典型的极性分子,因此其在催化剂表面的吸附性能可能会受到活性位点周围的局部电场的影响.构建合适的局部电场是调节CO吸附性能和C-C偶联过程的潜在手段之一.前期工作(Nature,2016,537,382-386)证明了高曲率金纳米针可以在尖端产生高的局部电场.高局域电场诱导K+聚集,使活性位点周围CO2浓度升高,大大促进了Au纳米针上的CO生成.基于Au纳米针的局域电场促进了CO2RR的CO生成.本文利用Cu纳米针促进并优化C-C偶联反应来提高C2产物活性和选择性.结果表明,局部电场可以促进C-C偶联过程,进而增强CO2电还原生成C2产物.有限元模拟结果表明,高曲率铜纳米针处存在较强的局部电场;密度泛函理论计算结果表明,强电场能促进C-C耦合过程.在此基础上,制备了一系列不同曲率的Cu催化剂,其中,Cu纳米针(CuNNs)的曲率最高,Cu纳米棒(CuNRs)和Cu纳米颗粒(CuNPs)曲率次之.实验测得CuNNs上吸附的K+浓度最高,证明了纳米针上的局部电场最强.同时,CO吸附传感器测试表明,CuNNs对CO的吸附能力最强,原位傅里叶变换红外光谱显示,CuNNs的*COCO和*CO信号最强.由此可见,高曲率铜纳米针可以诱导高局部电场,从而促进C-C耦合过程.催化性能测试结果表明,在低电位(-0.6 V vs.RHE)下,Cu NNs对CO2RR的生成C2产物的法拉第效率值为44%,约为Cu NPs的2.2倍.综上,本文为CO2RR过程中提高多碳产物提供了新的思路.

关 键 词:电场效应  C-C偶联  铜纳米针  C2产物  二氧化碳还原

Electric-field promoted C-C coupling over Cu nanoneedles for CO2 electroreduction to C2 products
HuangJingWei Li,Huimin Zhou,Yajiao Zhou,Junhua Hu,Masahiro Miyauchi,Junwei Fu,Min Liu.Electric-field promoted C-C coupling over Cu nanoneedles for CO2 electroreduction to C2 products[J].Chinese Journal of Catalysis,2022(2):519-525.
Authors:HuangJingWei Li  Huimin Zhou  Yajiao Zhou  Junhua Hu  Masahiro Miyauchi  Junwei Fu  Min Liu
Institution:(Hunan Provincial Key Laboratory of Chemical Power Sources,State Key Laboratory of Powder Metallurgy,School of Physics and Electronics,Central South University,Changsha 410083,Hunan,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450002,Henan,China;Department of Materials Science and Engineering,School of Materials and Chemical Technology,Tokyo Institute of Technology,Tokyo 152-8552,Japan)
Abstract:Cu-based catalysts are the most promising candidates for electrochemical CO2 reduction (CO2RR) to multi-carbon (C2) products. Optimizing the C-C coupling process, the rate-determining step for C2 product generation, is an important strategy to improve the production and selectivity of the C2 products. In this study, we determined that the local electric field can promote the C-C coupling reaction and enhance CO2 electroreduction to C2 products. First, finite-element simulations indicat-ed that the high curvature of the Cu nanoneedles results in a large local electric field on their tips. Density functional theory (DFT) calculations proved that a large electric field can promote C-C cou-pling. Motivated by this prediction, we prepared a series of Cu catalysts with different curvatures. The Cu nanoneedles (NNs) exhibited the largest number of curvatures, followed by the Cu nanorods (NRs), and Cu nanoparticles (NPs). The Cu NNs contained the highest concentration of adsorbed K+, which resulted in the highest local electric field on the needles. CO adsorption sensor tests indicated that the Cu NNs exhibited the strongest CO adsorption ability, and in-situ Fourier-transform infrared spectroscopy (FTIR) showed the strongest *COCO and *CO signals for the Cu NNs. These experi-mental results demonstrate that high-curvature nanoneedles can induce a large local electric field, thus promoting C-C coupling. As a result, the Cu NNs show a maximum FEC2 of 44% for CO2RR at a low potential (-0.6 V vs. RHE), which is approximately 2.2 times that of the Cu NPs. This work pro-vides an effective strategy for enhancing the production of multi-carbon products during CO2RR.
Keywords:Electric-field effect  C-C coupling  Cu nanoneedle  C2 products  CO2 electroreduction
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号