首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Composite cathode for IT-SOFC: Sr-doped lanthanum cuprate and Gd-doped ceria
Authors:Seung Jun Lee  P Muralidharan  Seung Hwan Jo  Do Kyung Kim
Institution:Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
Abstract:Composite cathodes were synthesized via a citrate combustion method followed by an organic precipitation method. The cathodes were of K2NiF4-type crystal structure with x wt.% Ce0.9Gd0.1O1.95 (CGO)–(100 ? x) wt.% La1.96Sr0.04CuO4 + δ (LSC), where x = 0, 10, 20 and 30. The individual structural phases of the composite cathodes were characterized using a third-generation synchrotron source beamline powder X-ray diffractometer (XRD). The porous grain morphology of the CGO–LSC cathode composite for a symmetrical half-cell was determined from cross-sectional scanning electron microscopy images and elemental line profiles. The composite cathode was made of 20 wt.% CGO–80 wt.% LSC (CL20–80) and was coated onto a Ce0.9Gd0.1O1.95 electrolyte. It showed the lowest area specific resistance (ASR) of 0.07 Ω cm2 at 750 °C. An electrolyte-supported (300 μm thick) single-cell configuration of CL20–80/CGO/Ni-CGO attained a maximum power density of 626 mW cm? 2 at 700 °C. The unique composite composition of CL20–80 demonstrates enhanced electrochemical performance and good chemical compatibility with the CGO electrolyte, as compared with the pure LSC (CL0–100) cathode for IT-SOFCs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号