首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Superabsorbent polymer binder for achieving MnO2 supercapacitors of greatly enhanced capacitance density
Authors:Kuang-Tsin Lee  Chung-Bo Tsai  Wen-Hsien Ho  Nae-Lih Wu
Institution:1. Department of Chemical Engineering, National Taiwan University, Taipei, 106 Taiwan, ROC;2. Taiwan Textile Research Institute, Tucheng City, Taipei County, 236 Taiwan, ROC
Abstract:One common dilemma encountered in designing a supercapacitor electrode is that the specific capacitance (Cs) of the active material decreases significantly as the active-material loading (mass area? 1) increases. As a result, the geometric capacitance density (GCD; Farad area? 1) of the electrode does not scale up linearly but gradually levels off with increasing loading. For MnO2 supercapacitors, this problem has been solved to a great extent by introducing a superabsorbent polymer (SAP) binder, namely polyacrylic acid (PAA), to form composite particles with MnO2. Other than acting as a binder to bound together MnO2 particles, the SAP is believed to facilitate distribution of electrolyte throughout the active layer owing to its electrolyte-absorbing and swelling behaviors. The Cs of MnO2 remains almost unchanged as the oxide loading varies over a wide range (1.5–6.5 mg cm? 2) of heavy active-material loading. In addition, putting PAA throughout the entire active layer helps to magnify the specific interaction between PAA and MnO2 that is known to enhance the capacitance of individual MnO2 particles. The success in combining both high Cs and high active-material loading results in GCD of ca. 1.8–1.4 F cm? 2 even under very high current densities (ca. 35–260 mA cm? 2 or 5–40 A g? 1-MnO2).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号