首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Role of (<Emphasis Type="Italic">n</Emphasis>,2<Emphasis Type="Italic">n</Emphasis>) reactions in transmutation of long-lived fission products
Authors:V A Apse  G G Kulikov  E G Kulikov
Institution:1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Moscow,Russia
Abstract:The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, 79Se, 93Zr, 99Tc, 107Pd, 126Sn, 129I, and 135Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 and the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes (126Sn, 129I, and 135Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for 126Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号