首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Combination Treatments with Astaxanthin-Loaded Microparticles and Pentoxifylline on Intracellular ROS and Radiosensitivity of J774A.1 Macrophages
Authors:Eleonora Binatti,Gianni Zoccatelli,Francesca Zanoni,Giulia Donà  ,Federica Mainente,Roberto Chignola
Affiliation:1.Department of Biotechnology, University of Verona, Strada Le Grazie 15-CV1, I-37134 Verona, Italy; (G.Z.); (F.M.); (R.C.);2.Sphera Encapsulation S.r.l., Strada Le Grazie 15-CV1, I-37134 Verona, Italy; (F.Z.); (G.D.)
Abstract:
Radiation-induced fibrosis (RIF) is a serious, yet incurable, complication of external beam radiation therapy for the treatment of cancer. Macrophages are key cellular actors in RIF because of their ability to produce reactive oxidants, such as reactive oxygen species (ROS) and inflammatory cytokines that, in turn, are the drivers of pro-fibrotic pathways. In a previous work, we showed that phagocytosis could be exploited to deliver the potent natural antioxidant astaxanthin specifically to macrophages. For this purpose, astaxanthin encapsulated into µm-sized protein particles could specifically target macrophages that can uptake the particles by phagocytosis. In these cells, astaxanthin microparticles significantly reduced intracellular ROS levels and the secretion of bioactive TGFβ and increased cell survival after radiation treatments. Here we show that pentoxifylline, a drug currently used for the treatment of muscle pain resulting from peripheral artery disease, amplifies the effects of astaxanthin microparticles on J774A.1 macrophages. Combination treatments with pentoxifylline and encapsulated astaxanthin might reduce the risk of RIF in cancer patients.
Keywords:pentoxifylline   astaxanthin   particle encapsulation   oxidative stress   ionizing radiations   macrophages   radiation-induced fibrosis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号