首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The linear stability of inviscid shear flow of a vibrationally excited diatomic gas
Authors:YuN Grigor’yev  IV Yershov
Institution:Novosibirsk, Russia
Abstract:The problem of the linear stability of plane-parallel shear flows of a vibrationally excited compressible diatomic gas is investigated using a two-temperature gas dynamics model. The necessary and sufficient conditions for stability of the flows considered are obtained using the energy integrals of the corresponding linearized system for the perturbations. It is proved that thermal relaxation produces an additional dissipation factor, which enhances the flow stability. A region of eigenvalues of unstable perturbations is distinguished in the upper complex half-plane. Numerical calculations of the eigenvalues and eigenfunctions of the unstable inviscid modes are carried out. The dependence on the Mach number of the carrier stream, the vibrational relaxation time τ and the degree of non-equilibrium of the vibrational mode is analysed. The most unstable modes with maximum growth rate are obtained. It is shown that in the limit there is a continuous transition to well-known results for an ideal fluid as the Mach number and τ approach zero and for an ideal gas when τ → 0.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号