Infrared laser spectroscopy of the CH3-HCN radical complex stabilized in helium nanodroplets |
| |
Authors: | Rudić S Merritt J M Miller R E |
| |
Affiliation: | Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA. |
| |
Abstract: | The CH3-HCN and CD3-HCN radical complexes have been formed in helium nanodroplets by sequential pickup of a CH3 (CD3) radical and a HCN molecule and have been studied by high-resolution infrared laser spectroscopy. The complexes have a hydrogen-bonded structure with C3v symmetry, as inferred from the analysis of their rotationally resolved nu = 1 <-- 0 H-CN vibrational bands. The A rotational constants of the complexes are found to change significantly upon vibrational excitation of the C-H stretch of HCN within the complex, DeltaA = A'-A" = -0.04 cm(-1) (for CH3-HCN), whereas the B rotational constants are found to be 2.9 times smaller than that predicted by theory. The reduction in B can be attributed to the effects of helium solvation, whereas the large DeltaA is found to be a sensitive probe of the vibrational averaging dynamics of such weakly bound systems. The complex has a permanent electric dipole moment of 3.1 +/- 0.2 D, as measured by Stark spectroscopy. A vibration-vibration resonance is observed to couple the excited C-H stretching vibration of HCN within the complex to the lower-frequency C-H stretches of the methyl radical. Deuteration of the methyl radical was used to detune these levels from resonance, increasing the lifetime of the complex by a factor of 2. Ab initio calculations for the energies and molecular parameters of the stationary points on the CN+CH4 --> HCN+CH3 potential-energy surface are also presented. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|