1.Universit?t Leipzig, Institut für Experimentelle Physik I,Leipzig,Germany
Abstract:
We study spontaneous pattern formation in a glass-forming nematic liquid crystal during the magnetically induced dynamic Fréedericksz transition. Pattern growth rates and wavelengths as functions of the magnetic field are extracted from optical transmission textures of thin planar cells. The characteristics of the observed stripe pattern can be related to viscoelastic parameters of the nematic by means of a linear stability analysis of director fluctuation modes. The viscous properties of the material allow to vary the time scales of the experiment with temperature by orders of magnitude, leaving the spatial structure of the pattern essentially unchanged. We find that the ratios of shear and rotational viscosity coefficients relevant for the pattern wavelength selection remain constant in the temperature range investigated, whereas their absolute values change by almost two orders. Received 23 November 2001 and Received in final form 19 April 2002