首页 | 本学科首页   官方微博 | 高级检索  
     


Proximal-gradient algorithms for fractional programming
Authors:Radu Ioan Boţ  Ernö Robert Csetnek
Affiliation:1. Faculty of Mathematics, University of Vienna, Vienna, Austria.;2. Faculty of Mathematics and Computer Sciences, Babe?-Bolyai University, Cluj-Napoca, Romania.radu.bot@univie.ac.at
Abstract:In this paper, we propose two proximal-gradient algorithms for fractional programming problems in real Hilbert spaces, where the numerator is a proper, convex and lower semicontinuous function and the denominator is a smooth function, either concave or convex. In the iterative schemes, we perform a proximal step with respect to the nonsmooth numerator and a gradient step with respect to the smooth denominator. The algorithm in case of a concave denominator has the particularity that it generates sequences which approach both the (global) optimal solutions set and the optimal objective value of the underlying fractional programming problem. In case of a convex denominator the numerical scheme approaches the set of critical points of the objective function, provided the latter satisfies the Kurdyka-?ojasiewicz property.
Keywords:Fractional programming  forward–backward algorithm  convergence rate  convex subdifferential  limiting subdifferential  Kurdyka-?ojasiewicz property
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号