首页 | 本学科首页   官方微博 | 高级检索  
     


Dual Chemical Modification of a Polytheonamide Mimic: Rational Design and Synthesis of Ion‐Channel‐Forming 48‐mer Peptides with Potent Cytotoxicity
Authors:Atsushi Hayata  Dr. Hiroaki Itoh  Shoko Matsutaka  Prof.Dr. Masayuki Inoue
Affiliation:Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
Abstract:Polytheonamide B ( 1 ) is a natural peptide that displays potent cytotoxicity against P388 mouse leukemia cells (IC50=0.098 nm ). Linear 48‐mer 1 is known to form monovalent cation channels on binding to lipid bilayers. We previously developed a fully synthetic route to 1 , and then achieved the design and synthesis of a structurally simplified analogue of 1 , namely, dansylated polytheonamide mimic 2 . Although the synthetically more accessible 2 was found to emulate the channel function of 1 , its cytotoxicity was decreased 120‐fold. Herein, the chemical preparation and biological evaluation of seven analogues 3 – 9 of 2 are reported. Compounds 3 – 9 were modified at their N terminus and/or the side chain of residue 44 of 2 to alter their physicochemical properties. The total synthesis of 3 – 9 was accomplished in a unified fashion by a combination of solid‐phase and solution‐phase chemistry. Systematic evaluation of the hydrophobicities, single‐channel currents, ion‐exchange activities, and cytotoxicities of 3 – 9 revealed that their hydrophobicities are correlated with the total magnitude of ion exchange and determine their cytotoxic potency. Consequently, the most hydrophobic analogue 9 exhibited the lowest IC50 value, which is comparable to that of 1 . Therefore, these results clarified that the bioactivity of the polytheonamide‐based peptides can be rationally controlled by changing their hydrophobicity at the N and C termini of the 48‐amino‐acid sequence.
Keywords:cytotoxicity  ion channels  peptides  structure–  activity relationships  total synthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号