首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trifaceted Mickey Mouse Amphiphiles for Programmable Self-Assembly,DNA Complexation and Organ-Selective Gene Delivery
Authors:Dr Ana I Carbajo-Gordillo  Manuel González-Cuesta  Dr José L Jiménez Blanco  Dr Juan M Benito  María L Santana-Armas  Dr Thais Carmona  Dr Christophe Di Giorgio  Dr Cédric Przybylski  Prof Carmen Ortiz Mellet  Prof Conchita Tros de Ilarduya  Prof Francisco Mendicuti  Prof José M García Fernández
Institution:1. Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092 Sevilla, Spain;2. Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof García González 1, 41012 Sevilla, Spain;3. Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain;4. Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química “Andrés M. del Rio” (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Spain;5. Institut de Chimie Nice, UMR 7272, Université Côte d'Azur, 28, Avenue de Valrose, 06108 Nice, France;6. CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Sorbonne Université, Paris, France
Abstract:Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.
Keywords:cyclooligosaccharides  macrocycles  molecular nanoparticles  non-viral gene delivery  self-assembling  trehalose
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号