首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synergistic Effect of Boron Nitride and Carbon Domains in Boron Carbide Nitride Nanotube Supported Single-Atom Catalysts for Efficient Nitrogen Fixation
Authors:Tianyong Liu  Qian Dang  Xunhui Zhou  Jin Li  Zhen Ge  Hang Che  Prof Shaobin Tang  Prof Yi Luo  Prof Jun Jiang
Institution:1. Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000 P. R. China;2. Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 P. R. China
Abstract:Developing the low-cost and efficient single-atom catalysts (SACs) for nitrogen reduction reaction (NRR) is of great importance while remains as a great challenge. The catalytic activity, selectivity and durability are all fundamentally related to the elaborate coordination environment of SACs. Using first-principles calculations, we investigated the SACs with single transition metal (TM) atom supported on defective boron carbide nitride nanotubes (BCNTs) as NRR electrocatalysts. Our results suggest that boron-vacancy defects on BCNTs can strongly immobilize TM atoms with large enough binding energy and high thermal/structural stability. Importantly, the synergistic effect of boron nitride (BN) and carbon domains comes up with the modifications of the charge polarization of single-TM-atom active site and the electronic properties of material, which has been proven to be the essential key to promote N2 adsorption, activation, and reduction. Specifically, six SACs (namely V, Mn, Fe, Mo, Ru, and W atoms embedded into defective BCNTs) can be used as promising candidates for NRR electrocatalysts as their NRR activity is higher than the state-of-the art Ru(0001) catalyst. In particular, single Mo atom supported on defective BCNTs with large tube diameter possesses the highest NRR activity while suppressing the competitive hydrogen evolution reaction, with a low limiting potential of ?0.62 V via associative distal path. This work suggests new opportunities for driving NH3 production by carbon-based single-atom electrocatalysts under ambient conditions.
Keywords:boron carbide nitride nanotubes  density functional theory  nitrogen reduction reaction  single-atom catalysts  synergistic effect
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号