首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic and thermoelectric properties of Mg_2Ge_xSn-_(1-x)(x=0.25,0.50,0.75) solid solutions by first-principles calculations
Institution:College of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract:The electronic structure and thermoelectric(TE) properties of Mg_2Ge_xSn_(1-x)(x = 0.25, 0.50, 0.75) solid solutions are investigated by first-principles calculations and semi-classical Boltzmann theory. The special quasi-random structure(SQS) is used to model the solid solutions, which can produce reasonable band gaps with respect to experimental results.The n-type solid solutions have an excellent thermoelectric performance with maximum zT values exceeding 2.0, where the combination of low lattice thermal conductivity and high power factor(PF) plays an important role. These values are higher than those of pure Mg_2Sn and Mg_2Ge. The p-type solid solutions are inferior to the n-type ones, mainly due to the much lower PF. The maximum zT value of 0.62 is predicted for p-type Mg_2Ge_(0.25)Sn_(0.75) at 800K. The results suggest that the n-type Mg_2Ge_xSn_(1-x) solid solutions are promising mid-temperature TE materials.
Keywords:solid solution  electronic structure  thermoelectric transport property  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号