Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution |
| |
Affiliation: | Science and Technology on Transient Physics Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China |
| |
Abstract: | A direct numerical simulation(DNS) is performed to investigate the control effect and mechanism of turbulent channel flow with the distribution of spanwise Lorentz force. A sinusoidal distribution of constant spanwise Lorentz force is selected, of which the control effects, such as flow characters, mean Reynolds stress, and drag reductions, at different parameters of amplitude A and wave number k_x are discussed. The results indicate that the control effects vary with the parameter A and k_x. With the increase of A, the drag reduction rate D_r first increases and then decreases rapidly at low k_x,and slowly at high k_x. The low drag reduction(or even drag increase) is due to a weak suppression or even the enhancements of the random velocity fluctuation and mean Reynolds stress. The efficient drag reduction is due to the quasi-streamwise vortex structure induced by Lorentz force, which contributes to suppressing the random velocity fluctuation and mean Reynolds stress, and the negative vorticity improves the distribution of streamwise velocity. Therefore, the optimal control effect with a drag reduction of up to 58% can be obtained. |
| |
Keywords: | flow control turbulent channel flow Lorentz force direct numerical simulation |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《中国物理 B》浏览原始摘要信息 |
|
点击此处可从《中国物理 B》下载免费的PDF全文 |
|