首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Decay Analysis of Ge Isotopes Formed in Reactions Induced by Tightly and Loosely Bound Projectiles
Authors:Amandeep Kaur  Kirandeep Sandhu  Manoj K Sharma
Institution:1. School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India; 2. Department of Physics, GSSDGS Khalsa College, Patiala 147001, Punjab, India
Abstract:The dynamical cluster-decay model (DCM) is employed to investigate the decay of 68,70Ge* compound nuclei formed respectively via tightly (4He) and loosely (6He) bound projectiles, using 64Zn target. The study is carried out over a wide energy range (Ec.m.~5 MeV to 16 MeV) by including the quadrupole deformations (β2i) and optimum orientations (θiopt) of the decaying fragments. The fusion cross-sections, obtained by adding various evaporation channels show nice agreement with the experimental data for 4He+64Zn reaction. The contribution from competing compound inelastic scattering channel is also analyzed particularly for 68Ge* nucleus at above barrier energies. On the other hand, the decrement in the fusion cross-sections of 70Ge* nuclear system is addressed by presuming that 65Zn ER is formed via two different modes:(i) the αn evaporation of 70Ge* nucleus, and (ii) 1n-evaporation of 66Zn* nuclear system, formed via breakup and 2n-transfer channels due to halo structure of the 6He projectile. Besides this, the suppression in 2np evaporation cross-sections suggests the contribution of another breakup and transfer process of 6He i.e. 4He+64Zn. The contribution of breakup+transfer channels for 6He+64Zn reaction is duly addressed by applying relevant energy corrections due to the breakup of " 6He" projectile into 2n and 4He. In addition to this, the barrier lowering, angular momentum and energy dependence effects are also explored in view of the dynamics of chosen reactions.
Keywords:tightly and loosely bound projectiles  evaporation residue  breakup and transfer  
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号