首页 | 本学科首页   官方微博 | 高级检索  
     


Analytical solution for transient laminar fully developed free convection in vertical channels
Authors:M. A. Al-Nimr  Professor M. A. I. El-Shaarawi
Affiliation:(1) Mechanical Engineering Department, Jordan University of Science and Technology, Irbid, Jordan;(2) Mechanical Engineering Department, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
Abstract:
Using Green's function method, analytical solutions for transient fully developed natural convection in open-ended vertical circular and two-parallel-plate channels are presented. Different fundamental boundary conditions for these two configurations have been investigated and the corresponding fundamental solutions are obtained. These fundamental solutions may be used to obtain solutions satisfying more general thermal boundary conditions. In terms of the obtained unsteady temperature and velocity profiles, the transient volumetric flow rate, mixing cup emperature and local nusselt number are estimated.Zusammenfassung Für oben und unten offene vertikale Kanäle mit Kreisquerschnitt bzw. als Parallelplattenanordnung werden unter Verwendung der Methode der Greenschen Funktionen analytische Lösungen für die nichtstationäre, vollausgebildete, natürliche Konvektion gefunden und zwar unter Zugrundelegung verschiedener Fundamental-Randbedingungen bezüglich beider Konfigurationen. Die so ermittelten Fundamentallösungen können zur Gewinnung von Lösungen für allgemeine Randbedingungen dienen. Der zeitlich veränderliche Volumenstrom, die Mischtemperatur und die Nusselt-Zahl werden mit Bezug auf die erhaltenen nichtstationären Profile für Temperatur und Geschwindigkeit näher analysiert.
Analytische Lösung für die nichtstationäre vollausgebildete laminare freie Konvektion invertikalen Kanälen
Nomenclature a local heat transfer coefficient based on the area of the heat transfer surface,q/(TwT0)=±(partT/party)w/(Tw–T0), minus and plus signs apply respectively for heating and cooling in case of parallel-plate channel and vice versa in case of a tube - 
$$bar a$$
average heat transfer coefficient over the channel
$$height, intlimits_0^l {a dz/l} $$
- cp specific heat of fluid at constant pressure - f volumetric flow rate,
$$intlimits_0^w {2pi y u dy} $$
for circular channels and
$$intlimits_0^w {u dy} $$
or two-parallel-plate channels - F dimensionless volumetric flow rate,f/(2pgrlvGr*) for circular channels forfw/(lvGr*) for two-parallel-plate channels - g gravitational body force per unit mass (acceleration) - G Green's function - Gr Grashof number,±g(Tw–T0)betaw3/v2 in case of an isothermal boundary of±gqw4/2kv2 in case of a uniform heat flux (UHF) on the heat transfer boundary, the plus and minus signs apply to upward (heating) and downward (cooling) flows, respectively. ThusGr is a positive number in both cases. - Gr* modified Grashof number,wGr/l - h heat gained or lost by fluid from the entrance up to a particular elevation in the channel, rgr0fcp(TmT0) for all cases - J0 Bessel function of zero order - k thermal conductivity of fluid - l height of channel - L dimensionless height of channel,1/Gr* - Nu local Nusselt number,|a| w/k - 
$$overline {Nu} $$
average Nusselt number,
$$intlimits_0^l {Nu dz/l} $$
- p pressure of fluid inside the channel at any cross-section - pprime pressure defect at any point,p–ps - p0 pressure of fluid at the channel entrance - ps hydrostatic pressure, mnplusrgr0gz where the minus and plus signs are for upward (heating) and downward (cooling) flows, respectively - p dimensionless pressure defect at any point(pprimew4)/(rgr0l2gamma2Grsstarf2) - Pr Prandtl number,mgrcp/k - q heat flux at the heat transfer surface,q=±k(partT/party)w where the minus and plus signs are, respectively, for cooling and heating in case of circular pipe and vice versa in case of a parallel-plate channel - Ra Rayleigh number,GrPr - Ra* modified Rayleigh number,Gr*Pr - t time - T fluid temperature at any point - Tm mixing-cup (mixed-mean) temperature over any cross section,
$$left( {intlimits_0^w {y uT dy} } right)/left( {intlimits_0^w {y u dy} } right)$$
for circular channels, and
$$left( {intlimits_0^w {uT dy} } right)/left( {intlimits_0^w {u dy} } right)$$
for two-parallelplate channels - T0 initial and channel-inlet fluid temperature - Tw temperature of the heat-transfer wall - u axial velocity component at any point - U dimensionless axial velocity,uw2/(lvGr*) - w radius of circular tube or width (between plates) of parallel-plate channel - y radial or transverse coordinate - y dimensionless radial or transverse coordinate,y/w - z axial coordinate - Z dimensional axial coordinate,z/(lGr*)Greek symbols agr constant appears in Eq. (8) - beta parameter appears in Eq. (9) which equals the integration of gamma with respect to tau or volumetric coefficient of thermal expansion - betan eigenvalues - gamma parameter appears in Eq. (7) - gamman eigenvalues - delta parameter appears in Eq. (12) - sgrn eigenvalues - epsi parameter appears in Eq. (9) - theta dimensionless temperature,(T–T0)/(Tw–T0) in case of an isothermal heat transfer boundary and(T–T0)/(qw/2k) for UHF boundary - thetam dimensionless mixing cup temperature,(Tm–T0)/(Tw–T0) in case of an isothermal heat transfer boundary and(Tm–T0)/(qw/2k) for UHF boundary - gammaw dimensionless temperature of the heat-transfer wall, equals unity in case of an isothermal heat transfer boundary and(Tw–T0)/(qw/2k) for a UHF boundary - lambdan eigenvalues - mgr dynamic viscosity of fluid - ngr kinematic viscosity of fluid, mgr/rgr0 - rhov fluid density at temperatureT,rgr0[1–beta(TT0)] - rgr0 fluid density atT0 - tau demensionless time,tk/(rhovcw2)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号