首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical prediction of flow in a model of a (potential) soft acting peristaltic blood pump
Authors:S Natarajan  M R Mokhtarzadeh‐Dehghan
Abstract:This paper presents a numerical study of the flow field in a novel ‘soft’ acting peristaltic pump. The pump has potential applications wherever pumping of biological or sensitive fluids with reduced damage is required. The application of the device presented is as a blood pump. The model of the pump comprises a cylindrical tube that forms three chambers. The walls of these chambers move radially as a function of time. The pumping action is initiated by applying phased movement between the chambers. The flow is treated as laminar, unsteady, incompressible, Newtonian, and with a moving boundary. The governing equations are solved using a finite element method (FEM). An operating speed of 60 cycle min−1 has been chosen. The results show that a periodic solution can be achieved after four cycles. The velocity field, streamline and shear stress are presented and discussed. The flow has generally a two‐way pulsatile nature, moving forwards and backwards. However, at the outlet, there is a net outflow over one cycle against a zero pressure head. Net flow linearly decreases to zero with increasing pressure head. Copyright © 2000 John Wiley & Sons, Ltd.
Keywords:blood  computational fluid dynamics  finite element  moving boundary  numerical  peristaltic  pump
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号