Thermorheological analysis of PVC blends |
| |
Authors: | A. Zá rraga,J. J. Peñ a,M. E. Muñ oz,A. Santamarí a |
| |
Abstract: | ![]() The effect of temperature on dynamic viscoelastic measurements of miscible poly (vinyl chloride) (PVC)/ethylene‐vinyl acetate–carbon monoxide terpolymer (EVA‐CO) and immiscible PVC/high‐density polyethylene (HDPE) and PVC/chlorinated polyethylene (CPE) molten blends is discussed. PVC plasticized with di(2 ethyl hexyl) phthalate (PVC/DOP) and CaCO3 filled HDPE (HDPE/CaCO3) are also considered for comparison purposes. Thermorheological complexity is analyzed using two time–temperature superposition methods: double logarithmic plots of storage modulus, G′, vs. loss modulus, G″, and loss tangent, tan δ, vs. complex modulus, G*, plots. Both methods reveal that miscible PVC/EVA‐CO and PVC/DOP systems are thermorheologically complex, which is explained by the capacity of PVC to form microdomains or crystallites during mixing and following cooling of the blends. For immiscible PVC/HDPE and PVC/CPE blends the results of log G′ vs. log G″ show temperature independence. However, when tan δ vs. log G* plots are used, the immiscible blends are shown to be thermorheologically complex, indicating that the morphology observed by microscopy and constitued by a PVC phase dispersed in a HDPE or CPE matrix, is reflected by this rheological technique. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 469–477, 2000 |
| |
Keywords: | PVC blends molten blends rheology thermorheological complexity superposition methods |
|
|