首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A one-dimensional theory of strain-gradient plasticity: Formulation, analysis, numerical results
Authors:L Anand  ME Gurtin
Institution:a Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Abstract:This study develops a one-dimensional theory of strain-gradient plasticity based on: (i) a system of microstresses consistent with a microforce balance; (ii) a mechanical version of the second law that includes, via microstresses, work performed during viscoplastic flow; (iii) a constitutive theory that allows
the free-energy to depend on the gradient of the plastic strain, and
the microstresses to depend on the gradient of the plastic strain-rate.
The constitutive equations, whose rate-dependence is of power-law form, are endowed with energetic and dissipative gradient length-scales L and l, respectively, and allow for a gradient-dependent generalization of standard internal-variable hardening. The microforce balance when augmented by the constitutive relations for the microstresses results in a nonlocal flow rule in the form of a partial differential equation for the plastic strain. Typical macroscopic boundary conditions are supplemented by nonstandard microscopic boundary conditions associated with flow, and properties of the resulting boundary-value problem are studied both analytically and numerically. The resulting solutions are shown to exhibit three distinct physical phenomena:
(i)
standard (isotropic) internal-variable hardening;
(ii)
energetic hardening, with concomitant back stress, associated with plastic-strain gradients and resulting in boundary layer effects;
(iii)
dissipative strengthening associated with plastic strain-rate gradients and resulting in a size-dependent increase in yield strength.
Keywords:Constitutive behavior  Viscoplasticity  Strain-gradient plasticity  Finite elements
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号