首页 | 本学科首页   官方微博 | 高级检索  
     

ISG-FHEV等效燃油消耗最小控制策略
引用本文:周祥,宋璐,付主木,宋书中. ISG-FHEV等效燃油消耗最小控制策略[J]. 应用声学, 2016, 24(4): 83-86
作者姓名:周祥  宋璐  付主木  宋书中
作者单位:常州大学机器人研究所,常州大学机器人研究所,常州大学机器人研究所,常州大学机器人研究所
基金项目:江苏省科技支撑计划项目(社会发展)(BEK2013671)
摘    要:针对室内复杂环境下火灾识别准确率会降低的问题,提出了一种改进的粒子群算法优化支持向量机参数进行火灾火焰识别的方法。首先在 颜色空间进行火焰图像分割,对获得的火焰图像进行预处理并提取相关特征量;其次采用PSO算法搜索SVM的最优核参数和惩罚因子,并在PSO算法中加入变异操作和非线性动态调整惯性权值的方法,加快了搜索SVM最优参数的精度和速度;然后将提取的火焰各个特征量作为训练样本输入SVM模型进行训练,并建立参数优化后的SVM分类器模型;最后将待测试样本输入SVM模型进行分类识别。算法的火灾识别准确率达到94.09%,分类效果明显优于其他分类算法。仿真结果表明,改进的PSO优化SVM算法提高了火焰识别的准确率和实时性,算法的自适应性更强,误判率更低。

关 键 词:火焰检测  支持向量机  粒子群算法  参数优化
收稿时间:2015-10-27
修稿时间:2015-11-17

Equivalent Consumption Minimization Strategy for Full Hybrid Electric Vehicle Assisted by an Integrated Starter Generator
Zhou Xiang,Song Lu,Fu Zhumu and Song Shuzhong. Equivalent Consumption Minimization Strategy for Full Hybrid Electric Vehicle Assisted by an Integrated Starter Generator[J]. Applied Acoustics(China), 2016, 24(4): 83-86
Authors:Zhou Xiang  Song Lu  Fu Zhumu  Song Shuzhong
Affiliation:Robotics Institute of Changzhou University,,,
Abstract:Due to fire detection is relatively low in the case of complex indoor environment, the proposed support vector machine (SVM) is applied to fire detection in the paper, among which an improved particle swarm optimization (PSO) is used to determine optimal parameters of support vector machine. Firstly, the obtained flame image will be processed ahead of time and extracted related feature quantity after flame image segmentation in YCrCb color space. Secondly, the optimal kernel parameter and penalty factor for support vector machine will be found by PSO algorithms, meanwhile, the ability of searching accuracy and speed of the optimal parameters of SVM are raised by adding mutation and nonlinear dynamic adjustment inertia weight in PSO algorithm;Then, each extracted flame characteristic parameters is sereved as training samples to train the SVM model, meanwhile, the SVM classifier model is established after the optimization of the parameters. Finally, the test samples will be input the SVM model to classification and recognition. The accuracy rate of aigorithm is 94.09%, and the classification effect is better than other aigorithms. Simulation results show that the improved SVM algorithm optimized by PSO can inhance the accuracy and real-time performance of flame recognition, as the same time, the algorithm has better adaptability and lower false positive rate.
Keywords:Flame detection  Support Vector Machine   support vector machine   Parameter optimization
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号