首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A continuous phase-modulated approach to spatial encoding in ultrafast 2D NMR spectroscopy
Authors:Tal Assaf  Shapira Boaz  Frydman Lucio
Institution:Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.
Abstract:Ultrafast 2D NMR replaces the time-domain parametrization usually employed to monitor the indirect-domain spin evolution, with an equivalent encoding along a spatial geometry. When coupled to a gradient-assisted decoding during the acquisition, this enables the collection of complete 2D spectra within a single transient. We have presented elsewhere two strategies for carrying out the spatial encoding underlying ultrafast NMR: a discrete excitation protocol capable of imparting a phase-modulated encoding of the interactions, and a continuous protocol yielding amplitude-modulated signals. The former is general but has associated with it a number of practical complications; the latter is easier to implement but unsuitable for certain 2D NMR acquisitions. The present communication discusses a new protocol that incorporates attractive attributes from both alternatives, imparting a continuous spatial encoding of the interactions yet yielding a phase modulation of the signal. This in turn enables a number of basic experiments that have shown particularly useful in the context of in vivo 2D NMR, including 2D J-resolved and 2D H,H-COSY spectroscopies. It also provides a route to achieving sensitivity-enhanced acquisitions for other homonuclear correlation experiments, such as ultrafast 2D TOCSY. The main features underlying this new spatial encoding protocol are derived, and its potential demonstrated with a series of phase-modulated homonuclear single-scan 2D NMR examples.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号