1.Frumkin Institute of Physical Chemistry and Electrochemistry,Russian Academy of Sciences,Moscow,Russia;2.Department of Chemistry and Biochemistry,University of Bern,Bern,Switzerland
Abstract:
We present a combined electrochemical and in situ STM study of the surface structure of Pt(100) single crystal electrodes in dependence on the cooling atmosphere after flame annealing. The following cooling conditions were applied: Ar/H2 and Ar/CO mixtures (reductive atmosphere), argon (inert gas) and air (oxidative atmosphere). Surface characterization by in-situ STM allows deriving direct correlations between surface structure and macroscopic electrochemical behavior of the respective platinum electrodes. We investigated the influence of defect type and density as well as long range surface order on the kinetics of the CO electro-oxidation reaction. The defect-rich Pt(100) electrodes as cooled in air or Ar, and followed by immersion in the hydrogen adsorption region display higher activities as compared to the rather smooth Pt(100)-(1 × 1) electrode cooled in an Ar/H2-atmosphere.