首页 | 本学科首页   官方微博 | 高级检索  
     


Spectroscopy of highly excited vibrational states of HCN in its ground electronic state
Authors:Martínez R Z  Lehmann Kevin K  Carter Stuart
Affiliation:Chemistry Department, Princeton University, Princeton, New Jersey 08544, USA. raul.martinez@helsinki.fi
Abstract:
An experimental technique based on a scheme of vibrationally mediated photodissociation has been developed and applied to the spectroscopic study of highly excited vibrational states in HCN, with energies between 29,000 and 30,000 cm(-1). The technique consists of four sequential steps: in the first one, a high power laser is used to vibrationally excite the sample to an intermediate state, typically (0,0,4), the nu3 mode being approximately equivalent to the C-H stretching vibration. Then a second laser is used to search for transitions between this intermediate state and highly vibrationally excited states. When one of these transitions is found, HCN molecules are transferred to a highly excited vibrational state. Third, a ultraviolet laser photodissociates the highly excited molecules to produce H and CN radicals in its A 2Pi electronic state. Finally, a fourth laser (probe) detects the presence of the CN(A) photofragments by means of an A-->B-->X laser induced fluorescence scheme. The spectra obtained with this technique, consisting of several rotationally resolved vibrational bands, have been analyzed. The positions and rotational parameters of the states observed are presented and compared with the results of a state-of-the-art variational calculation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号