首页 | 本学科首页   官方微博 | 高级检索  
     检索      

β-MnO2和α-Mn2O3纳米棒的自牺牲模板法制备、 表征和应用
引用本文:赵红远,刘兴泉,张峥,吴玥,杨光,陈炳,熊伟强.β-MnO2和α-Mn2O3纳米棒的自牺牲模板法制备、 表征和应用[J].高等学校化学学报,2015,36(3):436.
作者姓名:赵红远  刘兴泉  张峥  吴玥  杨光  陈炳  熊伟强
作者单位:电子科技大学微电子与固体电子学院, 电子薄膜与集成器件国家重点实验室, 成都 610054
基金项目:国家自然科学基金(批准号: 21071026)和电子科技大学杰出人才引进项目(批准号: 08JC00303)资助
摘    要:在150 ℃下, 仅以高锰酸钾溶液和无水乙醇为原料, 通过水热反应合成前驱体γ-MnOOH纳米棒. 以γ-MnOOH纳米棒为自牺牲模板, 分别在350和600 ℃下煅烧90 min, 制备出高纯度的β-MnO2α-Mn2O3纳米棒. 采用X射线粉末衍射(XRD)、 扫描电子显微镜(SEM)及热重分析(TGA)等对所制备的样品进行表征. 结果表明, 前驱物γ-MnOOH为高纯度的纳米棒状晶体, 直径约100~300 nm, 长度可达数微米, 且终产物β-MnO2α-Mn2O3均具有较高的纯度, 也很好地保持了前驱物的纳米棒状结构. 以二者为锰源, 通过固相反应合成出尖晶石LiMn2O4正极材料. 当充放电倍率为0.5 C时, 其首次放电比容量分别可达到120.4和123.9 mA·h/g, 而且表现出良好的循环性能和倍率性能.

关 键 词:β-MnO2  α-Mn2O3  纳米棒  自牺牲模板法  
收稿时间:2014-07-18

Preparation of β-MnO2 and α-Mn2O3 Nanorods via a Self-sacrificing Template Route and Their Characterization and Application†
ZHAO Hongyuan,LIU Xingquan,ZHANG Zheng,WU Yue,YANG Guang,CHEN Bing,XIONG Weiqiang.Preparation of β-MnO2 and α-Mn2O3 Nanorods via a Self-sacrificing Template Route and Their Characterization and Application†[J].Chemical Research In Chinese Universities,2015,36(3):436.
Authors:ZHAO Hongyuan  LIU Xingquan  ZHANG Zheng  WU Yue  YANG Guang  CHEN Bing  XIONG Weiqiang
Institution:State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Microelectronics and Solid State Electronics,University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract:Pure-phased γ-MnOOH nanorods were synthesized at 150 ℃ for 20 h through a hydrothermal reaction process, during which KMnO4 was reduced by CH3CH2OH under autogeneror pressure. With γ-MnOOH nanorods as self-sacrificing template, β-MnO2 and α-Mn2O3 nanorods were prepared by calcining at 350 and 600 ℃ for 90 min, respectively. The materials were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and thermal-gravimetric analysis(TGA). The results showed that γ-MnOOH nanorods had good crystallographic quality and the diameters were about 100—300 nm, the length could be as long as several micrometers. The morphology and microstructure were well reserved in β-MnO2 and α-Mn2O3 products and no other morphology of impurities was observed. With β-MnO2 and α-Mn2O3 nanorods as manganese sources, spinel LiMn2O4 samples were prepared by solid state method. At the charge/discharge rate of 0.5 C, the LiMn2O4 samples could deliver the initial discharge capacities of 120.4 and 123.9 mA·h/g, respectively, and present good cycling stability and rate performance.
Keywords:β-MnO2  α-Mn2O3  Nanorod  Self-sacrificing template route  
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号